数学徘徊記

自由な数学ブログ。

幾何

傍心の有名な難問

有名な平面幾何の難問として, 次のようなものがあります. 図において, \(O\)は\(\triangle ABC\)の外心, \(I_A\)は角\(A\)内の傍心とする. このとき, \(EF \perp OI_A\)を証明せよ. 問題自体はシンプルですが, かなりの難問です. まず, 結ぶ線が特殊ですね. …

問題コーナー(第3回)解答

この問題は難しかったかと思います。 15°って割と使うのが難しいんですよね。しかも27°という数字まであります。 解答です。 用意していた解答 この解答はやや複雑です。角の二等分線定理を使います。 まず、図のように点とおきます。 そして、の延長にとな…

円に内接もするし外接もする四角形

円に内接する四角形ってありますよね。 よく図形の問題を解いていると出てきます。逆に、円に外接する四角形っていうのもありますよね。 こちらはあまり問題では見かけませんが。確かにあります。では、 「円に内接もするし外接もする四角形」 とはどのよう…

問題コーナー(第三回)

解けたらコメントでも大丈夫なので、解答をお待ちしております。

問題コーナー(第2回)解答

では解答発表です。三角形\(ABC\)の外心を\(O\)とし、辺\(BC,CA,AB\)の中点をそれぞれ\(M_A,M_B,M_C\)とする。このとき三角形\(AOM_A,BOM_B,COM_C\)の外接円は点\(O\)以外の1点で交わることを示せ。円に関する反転を用いた解法です。点\(M_A,M_B,M_C\)をそれ…

問題コーナー

ほんっと久しぶり。前は12月だったかな。なんとなく三角形や円を描いていたらできた問題。僕の解き方だとまだ回りくどいと思うので、エレガントな解答をお願いします。簡単だったらごめんなさいm(_ _)mというわけで、早速問題。三角形\(ABC\)の外心を\(O\)と…

広中杯2016ファイナル3問目

この問題、本番では全然解けず、しかし家でやってみたら解けてしまったという悔しい問題。問題へこみのない四角形ABCDの対角線ACとBDは点Eにおいて垂直に交わっていて、∠EBC=12°, ∠EAB=∠CDE=33°, BE+EC=1となっている。このとき、△ABEの面積と△CDEの面積の差…

等角共役点の証明

等角共役点とはこのようなものだ。等角共役点:三角形ABCと点 P がある。角の頂点を通る直線 l と角の二等分線に関して対称な直線 m を l の等角共役線という。AP,BP,CP の等角共役線は一点で交わり,これを P の等角共役点という。この、「一点で交わる」と…

円の反転とオイラーの不等式

オイラーの不等式とは、三角形ABCにおいて、外接円の半径をR、内接円の半径をrとおくとR≧2rが成り立つ。というものである。これの円の反転を使ったきれいな証明を見つけたので、書いておく。まず次の補題を使う。補題:半径の等しい3つの円が1点で交わるとき…

昔、線を引いて遊んだこと。

初めての代数編。昔、こんな感じで線を引いて遊んだことがあるのだが…。0と1、0.1と0.9、0.2と0.8、…と線を結んでいくと、なんだか曲線が見えてくる。直線が曲線を作るのは、かなり不思議である。で、中1の時にこんなことが疑問に思った。「この曲線はどの…

2016JJMO本選第4問

これは本番中全然解けなかったものの、そのあと2週間後に解けた問題である。なかなか面白かった。財団が用意していた解答例と違ったので、書く。問題鋭角三角形ABCにおいて、垂心をH、外心をOとする。また、Oを通り直線に平行な直線とAB、ACの交点をそれぞ…

問題コーナー(第1回)解答

この問題は意外な答えになります。問題三角形ABCがある。辺BC上にAB=PCとなる点Pを取ったところ、角PAB=角ACBとなった。このとき、角ABCを求めよ。ただし角ABCは鈍角(90度より大きい)とする。1:正弦定理による解答△PBA∽△ABCよりBP:BA=BA:(BP+PC),BP(BP+PC…

問題コーナー 第1回(追加)

問題コーナー第1回、正直、正弦定理で余裕に解けると思っていませんか?実際そうなんですが…。実は、この問題は初等幾何でも解けるんです!考えてみてください!

問題コーナー 第1回

問題コーナーを作りました。記念すべき第1回なので、自作の問題(自分では良問と思っている)を載せます。問題三角形ABCがある。辺BC上にAB=PCとなる点Pを取ったところ、角PAB=角ACBとなった。このとき、角ABCを求めよ。ただし角ABCは鈍角(90度より大きい…