数学徘徊記

自由な数学ブログ。

整数論

Wilsonの定理の組み合わせ論的な証明

思いついたので. Wilsonの定理 \(p\)を素数とするとき, \( (p-1)! \equiv -1 \pmod p\).証明 (いくつか証明を略しているところがありますが埋めるのは難しくないです)\(\mathbb{Z}_p\)の要素\(\{0,1,\dots,p-1\}\)の置換\( (q_0,\dots,q_{p-1})\)の集合を\[(…

Ramanujan-Nagell equation

何年ぶりの整数論だろう… おもに整数論とか書いてあるくせに… すみません 問題 不定方程式\(x^2+7=2^n\)の正の整数解をすべて求めよ. 実験 小さい\(n\)をいろいろ代入してみましょう. \[\begin{eqnarray} 2^3-7&=&1&=&1^2\\ 2^4-7&=&9&=&3^2\\ 2^5-7&=&25&=&…

ある長方形の問題の8通りの解答

定理 記事の概要 定義 証明 (1) 二重積分 (2) 市松模様 (3) 市松模様2 (4) 多項式 (5) 素数 (6) オイラーパス (7) 二部グラフ (8) 数学的帰納法 まとめ 定理 ある長方形\(R\)が, 少なくとも1つの辺の長さが整数であるような有限個の長方形に分割されていると…

黒峰問題

追記:ミスを直しました。黒峰問題とは \(2^x+3^y+5=z^3\)の非負整数解\((x,y,z)\)をすべて求めよ。という問題で、まだ未解決です。 (1,0,2),(5,3,4)という2つの解は見つかっていますが、他は見つかっていません。ここは略しますが、奇遇やmod 4, 7, 9で考え…

最近解いたEGMOの良問(2017年のEGMO日本代表一次選抜試験の問題2)

最近解いた問題で、結構良問だったので紹介します。 2017年のEGMO日本代表一次選抜試験の問題2です。 問題 数列をと定める。 このとき、次の条件を満たす素数が無数に存在することを示せ。 条件:の中にの倍数が存在する。 問題解説 問題をわかりやすく解説…

2017をn進法で書き表したら各桁の和がn

鯵坂もっちょさんのこのツイートが気になったので、考察してみました。そもそも10進法2017の各桁の和も10だしn進法2017各桁の和がnになるのはほかにも10,19,22,25,29,33,37,43,49,57,64,73,85,97,113,127...といっぱいある けど2018には一つもない! ふしぎ…

マスターデーモンに挑戦

数学界で「マスターデーモン」というともうあれしかない、恐ろしい奴です。 1990 IMO 問3 \(\cfrac{2^n+1}{n^2}\)が整数となるような1より大きい整数\(n\)をすべて求めよ。 見た目はシンプルで、中学生も簡単に理解できる問題なのに、世界中の高校生を悩ませ…

LTEの補題

2019.06.25 追記:LTEの補題について新しい記事を書きました。 こちらもぜひ読んでください。 dama-solved.hatenablog.com 更新が遅れました。学園祭、定期試験などあり、少し忙しかったので。。。すいません。LTEといっても、Long Term Evolution(携帯電話…

平方剰余の相互法則の証明(6)

これがラスト。更新が遅れてしまったが、平方剰余の相互法則を証明しよう。 \(p,q\)を互いに異なる奇素数とする。そのとき、\[\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}\]が成り立つ。 これは格子を使った照明が…

平方剰余の相互法則の証明(5)

今回は平方剰余の相互法則を証明する前に、補充法則を証明する。第1補充法則\[\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}\]第2補充法則\[\left(\frac{2}{p}\right)=(-1)^{\frac{p^2-1}{8}}\]また、これは名前がついているかわからないのだが、重要な…

平方剰余の相互法則の証明(4)

補題3(ガウスの予備定理)\(p\)を奇素数、\((a,p)=1\)とする。このとき\[1\cdot a,2\cdot a,\cdots ,\frac{p-1}{2}\cdot a\]のうち、\(p\)で割った余りが\(\frac{p}{2}\)より大きいものの個数を\(n\)とするとき、\[\left(\frac{a}{p}\right)=(-1)^n\]が成立…

平方剰余の相互法則の証明(3)

つぎに、平方剰余に関する次の補題を証明する。これは「オイラーの基準」と呼ばれている。補題2\[\left(\cfrac{a}{p}\right)\equiv a^{\frac{p-1}{2}} \pmod p\]これはかなりきれいな式といえるだろう。証明以下、合同式はすべて \(p\) を法としたものである…

平方剰余の相互法則の証明(2)

まずこの補題を証明する。この補題は、平方剰余の相互法則だけではなく、いろいろな定理の補題としてよく使われる定理である。補題1:\(p\)を素数とする。そのとき、\(n\)次合同方程式\[f(x)\equiv 0 \pmod p \hspace{1cm}\cdots (1) \]は解をもってもその個…

平方剰余の相互法則の証明(1)

あ、最近整数論やってない…。というわけで整数論の記事を書く。今回はシリーズものにする。題して「平方剰余の相互法則シリーズ」である。まず、平方剰余の相互法則を語るうえで必要な記号について説明する。\(p\)を奇素数、\(a\)を\(p\)と互いに素な整数と…

2015ジュニア広中杯の問題について

2015年ジュニア広中杯の問題4番。2015の倍数で、どの桁の数字も奇数であるものを一つ求めよ。ただし、12桁以内のものに限る。という問題があった。答えを言ってしまうと、最少は155155(=2015x77)、次は179335(=2015x89)である。この問題、桁数を8桁までとし…

5882353について

5882353は面白い特徴を持った数で、5882353=5882+23532がなりたつ。一見しただけでは普通のテキトーな数にしか見えないので、よけいに不思議である。もちろん、同じような数を見つけたくなる。\(x^2+y^2=10^nx+y\)(\(x,y,n\)は自然数、\(10^n>y\))について…

x^2+y^2=n(z^2)の自然数解(2)

前回分はこちらx^2+y^2=n(z^2)の自然数解(1)ここから、\(n\)を一般的にして考えてみる。途中の式変形から考えると、\(n\)が2個の平方数の和で表されるとき、\(x^{2}+y^{2}=nz^{2}\)の解は無数に存在するのでは?検証しよう。\(n=a^2+b^2\)(\(a,b\)は自然数)…

x^2+y^2=n(z^2)の自然数解(1)

\(x^{2}+y^{2}=z^{2}\) はみんな知っている。この自然数解は \((a^{2}-b^{2},2ab,a^{2}+b^{2})\) の形で表され、無数にあるのは有名だが(ピタゴラス数) \(x^{2}+y^{2}=nz^{2}\) ( \(n\) は自然数)の自然数解は、 \(n\) がどんな時に存在するのか?と言う…

準完全数は存在するか?

なぜこんなことを考えたのか?僕の友達が考えた問題だが、約数の和が 2n + 1 に等しい数 n を準完全数と呼ぶことにする。このとき、準完全数は存在しない。という問題を出してきた。友達は200までやって、なかったらしい。ああ!何としても見つけたい!(`・ω…

ユークリッドの補題の証明

まず、ユークリッドの補題とは…。素数\(p\)が\(ab\)を割り切るなら,\(p\)は\(a\)か\(b\)のいずれか一方を割り切る。という、当たり前だろ!?( ・Д・)という定理。しかしこれ、証明がかなり回りくどい…。なかなか完全な証明を書いていないところが多かった…

エルデシュ・シュトラウス予想の考察

エルデシュ・シュトラウス予想とは…。n を n>2 を満たす自然数とするとき、\( \cfrac{4}{n}=\cfrac{1}{x}+\cfrac{1}{y}+\cfrac{1}{z}\)の自然数解(x,y,z)は必ず存在する。という予想です。これが中1の時にすごくはまってしまって…。その考察を書きます。2…