数学徘徊記

自由な数学ブログ。

2017をn進法で書き表したら各桁の和がn

鯵坂もっちょさんのこのツイートが気になったので、考察してみました。

2017を{n}進法でこう書き表したとします。
{n\geq 2017}のときは自明に成り立つので、{n<2017}とします。)
{2017=a_{m}n^m+a_{m-1}n^{m-1}+\cdots +a_{1}n+a_{0}}
ただし、{a_{m},a_{m-1},\cdots ,a_1,a_0}はそれぞれ0以上{n-1}以下の整数です。

すると各桁の和が{n}になるということなので、
{a_{m}+a_{m-1}+\cdots +a_1+a_0=n}
です。

以上まとめて、
{
  \left\{ \begin{array}{ll}
    a_{m}n^m+a_{m-1}n^{m-1}+\cdots +a_{1}n+a_{0}=2017 & \cdots① \\
    a_{m}+a_{m-1}+\cdots +a_1+a_0=n & \cdots②
  \end{array} \right.
}
となります。

ここで、①から②を引いてみましょう。
{a_{m}(n^m-1)+a_{m-1}(n^{m-1}-1)+\cdots +a_1(n-1)=2017-n}  …③
となります。

この左辺に注目です。

{n^k-1}{k}は正整数)というかたちがたくさんできましたが、
じつはこれらは{n^k-1=(n-1)(n^{k-1}+n^{k-2}+\cdots +1)}という風に因数分解できます。
つまり、{n^k-1}はすべて{n-1}で割り切れます。

なので、左辺は{n-1}で割り切れることが分かります。

③が成り立つためには、{2017-n}{n-1}で割り切れなければいけません。
{2017-n=2016-(n-1)}なので、

{2017-n}{n-1}で割り切れる {\Leftrightarrow} 2016が{n-1}で割り切れる

ということが分かります。

つまり、2017を{n}進法で書き表したら各桁の和が{n}になるとき、
{n-1}が2016の約数である必要があります。

ただし、必ずしも逆は成り立ちません。
{n-1}が2016の約数であっても、2017を{n}進法で書き表したら各桁の和が{n}になるとは限らない)
しかし、{2016=2^5\cdot 3^2\cdot 7}なので、2016の約数はたくさん(36個)あるので、
候補となる{n}はたくさんあり、それだけ条件を満たす{n}は多くなります。

では、2018を{n}進法で書き表したら各桁の和が{n}になるような{n}について考えましょう。
同じような方針で計算していくと、{n-1}が2017の約数である必要があります。

しかし、2017は素数です。n=2しか候補はありません({n<2018}なので)。
2017を2進法で表すと11111100001であり、各桁の和は7なのでこれは条件を満たしません。
というわけで、2018を{n}進法で書き表したら各桁の和が{n}になるような{n}はないのです。


というわけで、2017がこのような性質を持てたのは2016のおかげなんですね。
昨年の2016はいろいろな性質を持っていましたが、今年も「2016+1」としていろいろな性質がありそうです。