半年ぐらい前に考えた問題がやっと解けた。
半年ぐらい前に考えた問題ですが、やっと解けました。
su-hai.hatenablog.com
これです。
解答
任意の奇数について、その倍数で各桁がすべて奇数となるようなものが存在することを示す。
任意の奇数を(ただしは5の倍数でない奇数)とおく。
まず、次の補題を示す。
任意のについて、すべての桁が奇数となる桁のの倍数が存在する。
数学的帰納法で証明する。
のとき自明。(5が条件を満たす)
次に、のときに命題が成り立つと仮定し、のときも命題が成り立つことを証明する。
の倍数で、各桁が奇数であるものをとおく。
このとき、はすべて各桁が奇数となる桁の数だが、このうち1つはの倍数であることを示す。
をそれぞれで割ると、となるが、は5の倍数でないため、これらはそれぞれ5を法として互いに異なる。
よって、のなかに5の倍数が存在するため、のうち1つはの倍数であることが証明された。
そして、すべての桁が奇数となるの倍数が存在することを示す。
まず、の倍数ですべての桁が奇数となる桁の奇数をとおく。
また、鳩ノ巣原理により、のなかにはで割った余りが等しいものが存在し、それぞれの差をとおけば、これをで割ったものはの倍数である(は5の倍数でない奇数のため)。それをとおく。
このとき、は各桁がすべて奇数である。よって証明された。